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Abstract  

One frequently needs to compare the performance of two or more parallel computers, but 
how should this be done? The most straightforward way to do this would be to rely upon a suite 
of benchmarks. Unfortunately, there are many problems and limitations with this approach. 
Therefore, one is frequently forced to rely upon a combination of approaches. Unfortunately, 
many of the alternative approaches are all too frequently based on excessively simplistic 
approximations and extrapolations. This report discusses some of these issues so that the 
problems they can cause may be avoided in the future. 
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1. Introduction 

It is frequently necessary to compare the performance of two or more parallel computers. While 

in theory this might seem like a simple enough proposition, the reality is that it is far from being 

simple. Let us assume that the most logical approach is to rely upon a suite of benchmarks based 

on the expected work load. How should the benchmarks be selected? We have already said that 

they were to be based on the expected work load, but what does this mean? Some sites have very 

steady work loads that slowly evolve over time; however, many sites will see significant variations 

in the work load from month to month. Additionally, most sites have a collection of jobs that they 

would like to run, but which either cannot be run on their current systems, or at best can only be ran 

as a demo run in dedicated mode. 

Continuing to look at this problem in greater depth, two additional problems come to mind: 

(1) The benchmark suite has to be runable on the available benchmarking hardware. In other 

words, while most vendors have one or more systems that they use for running benchmarks, in 

general, these systems are not maxed-out configurations. Furthermore, there is competition for these 

systems, so in general, there will be some reluctance on the part of the vendors to run benchmark 

suites that take more than a few days to run. This point becomes even more important if the suite 

needs to be run more than once (e.g., to judge the effectiveness of tuning the code and/or the 

hardware configuration). This may make it particularly difficult to benchmark extremely large, and 

presumably highly scalable, jobs to see if the largest configurations perform as promised. 

Note: This work was made possible through a grant of computer time by the Department of Defense (DOD) High 
Performance Computing Modernization Program. Additionally, it was funded as part of the Common High 
Performance Computing Software Support Initiative administered by the DOD High Performance Computing 
Modernization Program. 

Note: Definitions for boldface text can be found in the Glossary. 



(2) What should the benchmark code look like? If one supplies source code and rules concerning 

what can be done to it, that very action can adversely impact the performance of the code on some 

systems. For example: 

• Vector optimized code will, in general, perform suboptimally on RISC-based platforms. 

• Code that has already been parallelized might have been done so based on certain assumptions 

about the computer's architecture. For example, it might have been written in CM-Fortran and 

targeted at the CM-5 made by Thinking Machines. Such a program can in theory be 

transformed into HPF. In theory, such a program is highly portable. The reality can be quite 

different, and even when the program is "portable," this says nothing about its performance or 

cost effectiveness. 

• Even if message-passing code that has been run on an early RISC-based system (e.g., the Intel 

Paragon) is supplied, the tuning of the code may be suboptimal. For example, the programmer 

might have assumed that 1-10 MFLOPS were good. Given a peak per-processor 

interprocessor communication rate of 100 MB/s, this is likely to result in a favorable ratio 

between communication and computation. However, if one switches to a processor where the 

expected performance is in the range of 50-200 MFLOPS, then it is unlikely that the ratio 

between communication and computation will still be as favorable. In particular, the latency 

of interprocessor communication is likely to be much more important. 

The Numerical Aerodynamic Simulation (NAS) group at NASA Ames Research Center came 

up with an alternative approach. Version 1 of the NAS Parallel Benchmarks (NPB1) was based on 

paper and pencil descriptions of the algorithms. It was up to individual vendors to write their own 

codes from scratch and to optimize them in almost any way they saw fit. The only requirements 

were that they could not change the algorithm and that the results had to pass certain tests. While 

this approach has the decided advantage of allowing the vendors to show off their wares in the most 

favorable light possible, it turned out that in many cases this light was much too favorable. 



One final note on this topic is that so far we have been requiring the vendor to use a specific 

algorithm. The problem is that not only is vector optimized code suboptimal for RISC-based 

architectures, but it may also be difficult to parallelize. In particular, it may have a limited amount 

of available parallelism. For this and other reasons, there may be a strong benefit to using a 

combination of Loop-Level Parallelism and Shared Memory SMPs when trying to parallelize such 

a code. On the other hand, if one sticks to algorithms that are known to perform well on current 

MPPs, one may be accepting a significant decrease in the algorithmic efficiency and, therefore, the 

delivered performance. Such a hit may be unavoidable if one is committed to using MPPs; however, 

these considerations demonstrate why it can be easy to underestimate the value of a Shared Memory 

SMP such as the SGI Origin 2000. 

The rest of the report discusses some commonly used metrics that are frequently used to 

supplement, or even replace, benchmarking as the basis for procurement decisions. 

2. Reviewing the Metrics 

When discussing metrics for any form of High Performance Computing with the user 

community, four metrics are commonly mentioned:* 

(1) Does the machine have enough (usable) memory to run my job? 

(2) How long will it take for my job to run? 

(3) What is the overall turnaround time for the job? 

(4) Can I use my favorite algorithm on the new computer? 

* "Programmers should always look for the best available algorithm (parallel or not) before trying to scale up the 'wrong' 
algorithm. For folks other than computer scientists, time to solution is more important than linear speedup"[l]. 



The first metric is, in general, fairly simple to evaluate. Either the machine has enough memory, 

or it doesn't (and one would have to use an out-of-core solver). In reality, things can be a bit more 

complicated since some combinations of computer architecture and software will result in some or 

all of the data being replicated up to N times, where N is the number of processors being used. 

Additionally, some architectures will favor the use of additional arrays (possibly for scratch 

purposes, or alternatively to hold the transpose of another array), which can also increase the memory 

requirements. Even so, it is, in general, fairly simple to predict if a job will fit in the memory of a 

certain machine.* 

The second metric is the one that seems to be most frequently discussed by the software 

developers, although it is this author's experience that most users are more interested in the third 

metric. Sections 3 and 4 discuss these metrics in greater detail. 

The fourth mefric is discussed in Pressel et al. [2]. Therefore, this metric is not discussed in great 

detail. The important point of the fourth metric is that some algorithms are easier to port to some 

system architectures than others. Li particular, some of the most efficient serial algorithms are 

relatively easy to port to vector-based and/or Shared Memory SMPs. At the same time, they can be 

much more difficult to port to traditional Distributed Memory MPPs. As such, the choice of 

hardware can in some cases limit the choice of algorithm and in so doing negatively impact the 

observed results for the second and third metric. This can be a particularly important point when 

deciding how strongly to stress the concept of portability for software development projects. 

* It is important to keep in mind that on a distributed memory architecture, the memory requirement will frequently set 
the lower bound on the number of processors that can be used for a certain job. Historically, distributed memory 
architectures were configured with limited amounts of memory per processor. As a result, one was sometimes forced 
to use more processors than were optimal for a particular job, just to have enough memory to run that job at all. While 
this is in general less of an issue today than in the past (i.e., some distributed memory systems are now equipped with 
1 GB of memory per processor), the issue has not gone away entirely (e.g., as late as 1996, the default configuration 
for the Cray T3E was 64 MB per processor) [3,4]. 



3. How Long Will It Take for My Job to Run? 

While the second metric deals with the run time for a complete job, rarely will one see 

presentations based on run time for the complete job. While there are several reasons for this, the 

most common is that it takes too much computer time to obtain fully converged solutions. This is 

especially the case if one wishes to use this metric to measure performance as a function of the 

number of processors used. For simulations that have the concept of a Time Step (e.g., runs 

involving CFD), a common solution to this problem is to assume that it takes a fixed number of time 

steps to solve the problem (unfortunately, this is only an approximation whose validity is sometimes 

left unresolved) [1]. Given this solution, one can then stick to comparing the performance based on 

calculations involving a relatively small number of time steps. The down side to this is that start up 

and termination costs will now skew the results. The solution to this problem is of course to use 

some method to remove these costs from consideration (the assumption being that they will not be 

excessively large when running the complete problem). 

If the simplifications were to stop at this point, we would, in general, still be on fairly solid 

ground. Unfortunately, that is rarely the case. Instead, several different approaches are frequently 

applied to simplifying this metric even further, and it is highly questionable if any of these 

approaches can be justified except by the claim of expediency. Let us briefly look at some of these 

simplifications and see where the problems are. 

3.1 Ideal Speedup. Most textbooks on parallel programming talk about the ideal speedup as 

being linear speedup. They then go on to talk about how the performance will deviate from linear 

speedup as the result of Amdahl's Law, the costs associated with interprocessor communication, etc. 

They may also talk about scaled speedup [5]. However, while for obvious reasons it is desirable to 

have linear speedup as the ideal speedup, some approaches to parallelization can result in distinctly 

nonlinear speedup for the ideal speedup (see Example 1). 



•  Example 1: Sublinear Ideal Speedup. 

If one has a code that is vectorizable but difficult to parallelize using message- 
passing code (e.g., many Implicit CFD codes fall into this category), then the most 
appropriate way to parallelize the code might be to use loop-level parallelism (e.g., 
OPENMP). However, if one assumes that the number of processors being used is within 
a factor of 10 of the available parallelism (an assumption that will in general be true 
when working with 3-D problems and 32 or more processors), then the ideal speedup 
will be a stairstep, rather than a straight line. Furthermore, if different loops are 
parallelized in different directions, and each direction has a different number of 
iterations associated with it, then the ideal speedup will consistently fall well below the 
line for linear speedup. 

The basis of this claim has to do with the number of iterations being a small-to- 
moderate-sized integer. To see this, let us assume that we have only one loop to 
parallelize and that the available number of processors equals the available parallelism. 
Let us create a plot of performance vs. the number of processors used. As we increase 
the number of processors being used, we will reach the point where all but one or two 
of the processors have two iterations assigned to them, with the remaining processors) 
having three iterations assigned to them. Add another processor, and all of the 
processors have, at most, two iterations assigned to them, and the speed takes a 
noticeable jump. Add additional processors, and nothing happens. As a result of adding 
the additional processors, more and more of the processors only have one iteration 
assigned to them, but as long as even one processor has two iterations assigned to it, the 
speed will remain unchanged (in terms of the ideal speedup, on some real systems, the 
speed may actually drop). Finally, when the number of processors equals the available 
parallelism, one will get a significant jump in performance. 

This effect can be clearly seen in the theoretical numbers in Figure 1 and Table 1. 
Furthermore, if one looks at actual results that we have for the Implicit CFD code F3D, 
one can see that at least on a well-designed system such as the SGI Origin 2000, this 
effect really does exist (see Figure 2). 

From the discussion in Example 1, one can see that assumptions regarding what constitutes 

the ideal speedup can vary depending on the approach to parallelization. Additionally, since the use 

of loop-level parallelism is primarily restricted to Shared Memory SMPs (as well as the now obsolete 

SIMD systems), the predicted speedup can, at least, indirectly depend on the choice of system 

architecture. 



15 r 

D.    10 
Z) 
Q 
HI 
HI 
Q. 
CO 

5 - 

■ i t ■ ■ ■ i 

5 10 
NUMBER OF PROCESSORS USED 

15 

Figure 1. Predicted Speedup for a Loop With 15 Units of Parallelism. 

Table 1. Predicted Speedup for a Loop With 15 Units of Parallelism 

No. of Processors Maximum Units of Parallelism 
Assigned to a Single Processor 

Predicted Speedup 

1 15 1.000 
2 8 1.875 
3 5 3.000 
4 4 3.750 
5-7 3 5.000 
8-14 2 7.500 
15 1 15.000 
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Figure 2. Performance Results for the One-Million-Grid-Point Data Set. 

3.2 Linear Speedup. Many people seem to be of the impression that the compilers are 

producing excellent serial code. Therefore, all that they really need to worry about is getting good 

linear speedup (or, at least, linear scaled speedup). A few people go even further and assume that 

any good code will get linear speedup/scaled speedup and that the code will achieve approximately 

the same percentage of peak on all RISC (or even RISC/CISC) based systems. Based on this train 

of thought, one is left with the inescapable conclusion that unless the vendor's pricing is way out of 

line, one should buy the system with the fastest processor possible (based purely on peak speed). In 

general, these conclusions are supported by the published Linpack numbers. 

The problem is that Linpack is an easily tuned code that, in general, gives a very high level of 

performance on almost all HPC systems currently in production. If one compares the Linpack 

numbers to those of other HPC benchmarks (e.g., the NAS Parallel Benchmarks), one will, in 



general, see a poor level of correlation between the two sets of numbers. There are three main 

reasons for this: 

(1) Given poorly tuned code, few if any compilers will produce a highly efficient executable. 

In general, poorly tuned code will result in performance levels that range from poor to fair. 

The problem is compounded by the design decisions that all vendors make in designing 

their systems. In some cases, these decisions can make it nearly impossible to produce 

highly tuned code for some/many algorithms. Therefore, the actual performance can depend 

dramatically (in some cases by a factor of 10 or more) on the skill of the programmer and 

the choices made by the system designers. 

(2) While some computational kernels (e.g., Linpack) are easily made to live out of cache, for 

many other programs, that is not the case (especially if they are still written in a manner 

which favors vector processors). In that case, the speed of the program is likely to correlate 

strongly with how rapidly data can be moved between memory and the processor. 

Unfortunately, for some systems, this may limit the program's performance to only a few 

percent of peak (based on MFLOPS) [6]. 

(3) As the processors get faster, and assuming that one is able to maintain the performance as 

a constant percentage of peak, then it becomes increasingly more difficult to obtain linear 

speedup without increasing the amount of work assigned to each processor. The problem 

here is that if one doubles the processor speed, while decreasing the number of processors 

used by a factor of 2, it is far from clear that the system with the fastest processors is the 

best system to buy. In particular, since systems with faster processors almost always cost 

more per Peak MFLOPS, the system with the slower processors might actually be more cost 

effective and just as fast (given the appropriate number of processors). 



Therefore, we have seen that basing decisions purely on linear speedup (or even worse, the 

assumption of linear speedup) can fail to properly predict the performance of a code-machine 

combination for the second metric. 

3.3 Maximum Speed. Is the fastest machine the best machine for the job? If one is a Grand 

Challenge user, or alternatively a software developer primarily interested in pushing the boundaries 

for really large jobs, then faster is certainly better. Once again, this can lead one to the conclusion 

that one should only buy/use highly scalable systems with very fast processors and lots of memory 

(although how much memory per processor can still be debated). However, such a decision can have 

several penalties associated with it: 

• The new machine might not meet the needs of all of the users (e.g., those interested in running 

parametric studies involving huge numbers of serial jobs). 

• Bigger machines tend to be harder and therefore more expensive to build. Jh general, the more 

scalable the design is, the greater the cost per delivered (usable) MFLOPS is likely to be. 

• Many users may not need to use huge numbers of processors. Alternatively, the users may 

only be using large numbers of processors to satisfy their memory requirements. Therefore, 

while many sites are likely to find that huge highly scalable systems can produce excellent 

results for the second metric, they will produce far from optimal results for the third metric. 

However, at many sites, the majority of the cycles are consumed by jobs using a small-to- 

moderate percentage of the total available resources. Therefore, for the users at these sites, once the 

system size has reached a certain point, there is little or no benefit (there may even be a large 

penalty) from increasing the size of an individual system any further. In such a case, it is reasonable 

to do a cost/benefit analysis comparing a single large system to multiple moderate-sized systems (this 

is especially true when dealing with the metacenter concept, where some centers may go one way, 

10 



while others are free to go the other way, thereby ensuring that the needs of Grand Challenge users 

continue to be addressed). This thought is discussed further in section 4. 

4. What Is the Overall Turnaround Time for the Job? 

The overall turnaround time is primarily the sum of the following values: 

• Time spent waiting to start running (on many systems, this can be as long as a week or 

longer).* 

• The minimiim amount of time required for the program to execute (this is what one would see 

on a dedicated system). 

• Any degradation to the run time resulting from not running on a dedicated system (e.g., 

resulting from extra context switches and/or time spent sitting at spin locks). 

• Time spent waiting for the operating system to schedule a job's time slice when running in a 

time-sharing environment. 

From this, one can see that the three things that matter are: 

(1) Minimizing the time spent waiting for a job to start running. 

(2) Ensuring that the minimum run time will more than meet the needs of most users. 

(3) Mmimizmg/eliminating any sources of degradation to the run time that result from running 

in a multiuser environment. 

* Note: For users performing studies involving a large number of runs, it is generally best to define turnaround time 
in terms of when the first job was submitted and when the last job starts to run. 

11 



In theory then, if the non-Grand Challenge jobs collectively need X amount of delivered 

GFLOPS, with any one job requiring a minimum of Y MFLOPS to meet its performance 

requirements, then one can buy any system/combination of systems that delivers X GFLOPS in 

quantas of Y MFLOPS. One can then go out and buy the cheapest system that meets these 

specifications. 

The reality is frequently a bit different than that. First, one frequently has a fixed amount of 

money to spend, so instead of buying the cheapest system, one will normally buy the largest complex 

of systems one can afford. The second point is that flexibility in scheduling and use will frequently 

translate into a cost savings that will allow one to run more jobs. In other words, if different jobs 

use different numbers of processors, then it is probably best from a scheduling standpoint if the 

smallest systems being considered are at least 2-3 * Y MFLOPS in size. 

Another consideration is, How efficiently is the memory being used? On shared memory 

systems, some jobs will be able to share a single pool of memory M MB in size. Running the same 

job on a distributed memory architecture might then require replicating the data structures in the 

local memory of every processor (this is a common practice for chemistry codes). As a result, when 

using N processors, one must now buy N * M MB of memory. This can make it much cheaper to 

run these jobs on a shared memory system, such as those made by SGI and SUN. Unfortunately, it 

is not always clear if this savings will still be present when running on less main stream 

architectures, such as the KSR1 or even the Convex Exemplar with its CTI cache. 

Even when running a standard message-passing job, different users may wish to see different 

amounts of memory per processor. If one equips all of the processors only with the largest amount 

of memory possible, the throughput might suffer due to the decreased number of processors in the 

system. Therefore, in a throughput oriented environment, it is probably best to equip different 

groups of processors with different amounts of memory. Exactly how this should be accomplished 

(especially when dealing in a metacenter type of environment) can be quite complicated (in part, 

because politics will almost always be a factor in the final decision). While this discussion has 

12 



centered around memory vs. processors, there can be other resources (e.g., disk drives, I/O 

controllers, and even software licenses) that can also be an important part of the picture. 

5. Conclusion 

We have seen that there can be a number of factors that decide which metric is most appropriate 

in each circumstance. While many users will want to only report linear speedup, that is frequently 

a metric of questionable value, hi particular, while one might be tempted to say that his or her metric 

has nothing to do with the procurement decisions that this report keeps stressing, the truth is that 

more often than not the metric will have everything to do with those decisions. If the decision 

makers only see glowing reports, their conclusions may be unintentionally biased. If they see mostly 

glowing reports and only a limited number of reports that stress the thornier issues, it can be all too 

easy to ignore those issues. Therefore, any user who writes reports based solely on oversimplified 

metrics runs the very real risk of leading management, and possibly even the entire industry, down 

a path of uncertain value (at best). 

13 
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Glossary 

CFD 

CISC 

GFLOPS 

High Level Languages 

HPF 

Low Level Languages 

MB 

MFLOPS 

MPP 

NASA 

RISC 

SMP 

Computational Fluid Dynamics 

Complicated Instruction Set Computer, an approach to processor 
design that assumes that the best way to get good performance out of 
a system is to provide instructions that are designed to implement 
key constructs (e.g., loops) from high level languages. 

Billion Floating Point Operations per Second 

Computer languages that are designed to be relatively easy for the 
programmer to read and write. Examples of this type of language are 
Fortran, Cobol, C, etc. 

High Performance Fortran 

Computer languages that are designed to reflect the actual instruction 
set of a particular computer. In general, the lowest level language is 
known as Machine Code. Just slightly above machine code is a 
family of languages collectively known as Assembly Code. 

Million Bytes 

Million Floating Point Operations per Second 

Massively Parallel Processor 

National Aeronautics and Space Administration 

Reduced Instruction Set Computer, an approach to processor design 
that argues that the best way to get good performance out of a system 
is to eliminate the Micro Code that CISC systems use to implement 
most of their instructions. Instead, all of the instructions will be 
directly implemented in hardware. This places obvious limits on the 
complexity of the instruction set, which is why the complexity had to 
be reduced. 

Symmetric Multiprocessor 
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